
The Variability Expeditions:
Variability-Aware Software for Efficient

Computing With Nanoscale Devices.

Rajesh K. Gupta

Nikil Dutt, UCI

Punit Gupta, UCLA

Mani Srivastava, UCLA

Lucas Wanner, UCLA

Steve Swanson, UCSD

Lara Dolecek, UCLA

Subhashish Mitra, Stanford

YY Zhou, UCSD

Tajana Rosing, UCSD

Alex Nicolau, UCI

Ranjit Jhala, UCSD

Sorin Lerner, UCSD

Rakesh Kumar, UIUC

Dennis Sylvester, UMich

To a software designer, all chips look alike

To a hardware engineer, a chip is
delivered as per contract in a data-sheet.

2

From Chiseled Objects to Molecular Assemblies

3

20-May-13 3 Abbas Rahimi/ UC San Diego

Temperature

Clock

actual circuit delay guardband

Aging VCC Droop Across-wafer Frequency

What if?

Hardware Abstraction Layer (HAL)

Operating System

Application Application

4

Time or part

} underdesigned

hardware

New Hardware-Software Interface..

Time or part

Application

Hardware Abstraction Layer (HAL)

Operating System

Application

minimal variability

handling in hardware
Underdesigned

Hardware

Opportunistic

Software

5 Builds upon a 50-year rich research in fault tolerance.

UNO Computing Machines Seek
Opportunities based on Sensing Results

6

Sensors

Models

Do
Nothing

Change
Hardware
Operating

Point

Change
Program

Parameters

Change
Algorithms

Change
Runtime

Parameters

Metadata Mechanisms: Reflection, Introspection

Building Machines that leverage move from
Crash & Recover to Sense & Adapt

Machines that consist of parts with variations in
performance, power and reliability

Machines that incorporate sensing circuits

Machines w/ interfaces to change ongoing
computation & structures

New machine models: QOS or Relaxed Reliability
parts

7
HW

SW

Example: Procedure Hopping in Clustered
CPU, Each core with its voltage domain

• Statically characterize procedure
for PLV

• A core increases voltage if
monitored delay is high

• A procedure hops from one core
to another if its voltage variation
is high

• Less 1% cycle overhead in
EEMBC.

8

... I$Bi-1I$B0

Log. Interc.

Core15

V
A

-V
D

D
-h

o
p

p
in

g

... TCDMBj-1TCDMB0

Log. Interc.

Low VDD

Typical VDD

High VDD

D
F

S...

f+
1

8
0

°
f+

1
8

0
°

f

CPM

Level ShiftersLevel Shifters

Level ShiftersLevel Shifters

SHM

PSS

Core0

V
A

-V
D

D
-h

o
p

p
in

g

CPM

PSS

VDD = 0.81V VDD = 0.99V VA-VDD-Hopping=(0.81V 0.99V ,)

 f0

862

f1

909

f2

870

f3

847

f4

826

f5

855

f6

877

f7

893

f8

820

f9

826

f10

909

f11

847

f12

901

f13

917

f14

847

f15

901

f0

862

f1

909

f2

870

f3

847

f4

1370

f5

855

f6

877

f7

893

f8

1370

f9

1370

f10

909

f11

847

f12

901

f13

917

f14

847

f15

901

 f0

1408

 f1

1389

 f2

1408

 f3

1370

 f4

1370

 f5

1408

 f6

1408

 f7

1408

 f8

1370

 f9

1370

 f10

1389

 f11

1370

 f12

1408

 f13

1408

 f14

1389

 f15

1389

HW/SW Collaborative Architecture to Support
Intra-cluster Procedure Hopping

9

• The code is easily accessible via the shared-L1 I$.
• The data and parameters are passed through the shared stack in

TCDM.
• A procedure hopping information table (PHIT) keeps the status

for a migrated procedure.

…
ProcX@Callee:
if (calculate_PLV ≤ PLV_threshold)

set_statusX_PHIT = running
load_contex¶m_from_SSPX

set_all_param&pointers
call ProcX

store_contex_to_SSPX

set_statusX_PHIT = done
send_broadcast_ack

else
resume_normal_execution

…

Broadcast_req_ISR:
ProcX@Callee = search_in_PHIT

call ProcX@Callee

…
call ProcX //conventional compile
Call ProcX@Caller //VA-compile

…
ProcX@Caller:

If (calculate_PLV ≤ PLV_threshold)
call ProcX

else

create_shared_stack_layout
set_PHIT_for_ProcX

send_broadcast_req
set_timer
wait_on_ack_or_timer

…
Broadcast_ack_ISR:

if (statusX_PHIT == done)
load_context&return_from_SSPX

Shared

Local

Heap

Shared

Stack

ProcX
ProcX

@Callee

PHIT

O
p

e
ra

tin
g

 C
o

n
. M

o
n

it.
In

te
rru

p
t C

o
n
t.

O
p

e
ra

ti
n

g
 C

o
n

. M
o

n
it
.

In
te

rr
u
p

t
C

o
n
t.

TCDM

S
h

a
re

d

L
1
 -I$

Callee Corek Caller Corei

ProcX

@Caller
……

…

Stacks

ViPZonE: Exploiting Memory Power Variability

• App developers can optimize
dynamic allocations for reduced
power
• Linux + Glibc implementation

Application Layer
Source code annotations

Upper OS Layer
Special GLIBC library, kernel system calls

Lower OS Layer
DIMM power variability-aware zoning and allocation

Memory Controller

DIMM 1 DIMM 2 DIMM n

A
p

p
lic

a
tio

n

O
S

H

a
rd

w
a

re

DIMM
Power

Profiles

10
10 Energy Source Network

(Batteries)

CPU Mem Storage Accelerators

Runtime

Microarchitecture and Compilers

Applications

V
en

d
o

r

P
ro

ce
ss

A
m

b
ie

n
t

A
gi

n
g

Power

Performance

Errors

11

Example: UnO Stack for Duty-cycled Sensors

Many Sensors: Psleep, Pactive, Memory Speed, Temp, Battery,...

OS

Application

Hardware Signature Sensing Manager

Activation

Sampling Configuration

Sampling Request

Sample, Event,

Time -series

Samp

le

Forwa

rd

module SenseAndForward {
provides energylevel LowFid<1>;
provides energylevel MidFid<2>;
provides energylevel HiFid<3>; }

{ On_event Timer

call SensorRead();

On_event LowFid

call Timer(2500);

On_event MidFid

call Timer(2000);

On_event HiFid

call Timer(1650);}

module SenseAndForward {
provides energylevel LowFid<1>;
provides energylevel MidFid<2>;
provides energylevel HiFid<3>; }

{ On_event Timer

call SensorRead();

On_event MonitorTimer

call SysinfoRead(&sysinfo);

If Error > Delta

call Time(DownSample);

}

module SenseAndForward {
provides energylevel LowFid<1>;
provides energylevel MidFid<2>;
provides energylevel HiFid<3>; }

{ On_event SysinfoChanged

call SysinfoRead;

if Error > Delta

call Timer(DownSample);}

A

B

C

Baseli

ne

task

Monit

or

Timer

Sysinfo

Metadata

Reflection

Introspection

Reflection

Asynchronous notification

GRAND CHALLENGE, QUESTIONS
AND RESEARCH PROGRESS

RESEARCH AND ITS ORGANIZATION

12

Expedition Grand Challenge & Questions

“Can microelectronic variability be controlled and
utilized in building better computer systems?”

13

Three Goals:
a. Address fundamental technical

challenges (understand the
problem)

b. Create experimental systems
(proof of concept prototypes)

c. Educational and broader
impact opportunities to make
an impact (ensure training for
future talent).

What are most effective ways to detect variability?

What are software-visible manifestations?

What are software mechanisms to exploit variability?

How can designers and tools leverage adaptation?

How do we verify and test hw-sw interfaces?

Research Organization

• Four thrust areas

1. Measurement and Modeling

2. Design Tools and Testing Methodologies

3. Microarchitecture and Compilers

4. Runtime Support

• Two Cross-cutting thrusts

5. Applications and Testbeds

6. Outreach and Education

14
Thrusts span teams across universities, usually in pairs.

Thrusts traverse institutions on testbed
vehicles seeding various projects

15

Group A: Signature
Detection and

Generation

Characterizing variability in power
consumption for modern computing

platforms, and implications

Runtime support and software
adaptation for variable hardware

Probabilistic analysis of faulty
hardware

Understanding and exploiting
variability in flash memory devices

FPGA-based variability simulator

Group B: Variability
Mitigation
Measures

Mitigating variability in solid-state
storage devices

Hardware solutions to better
understand and exploit variability

VarEmu emulation-based testbed for
variability-aware software

Variability-aware opportunistic
system software stack

Application robustification for
stochastic processors

Group C:
Opportunistic
Software and
Abstractions

Effective error resilience

Negative bias temperature instability
and electromigration

Memory-variability aware runtime
systems

Design-dependent ring oscillator and
software testbed

Executing programs under relaxed
semantics

Two years of building an Expedition

• Kickoff, review, tape-outs and builds-ins

– 82 peer-reviewed publications, 21% collaborative

– 54 events/releases on variability.org/news

– 64 presentations on variability.org/presentations

• A collaborative community

– 15 faculty, 25 GSRs, 1 postdoc, 10+ UG, 300 K-8-12

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Intel, Google, Oracle, Cisco (UCSD), STmicro (Michigan) Wafer Pruning from UCLA (EEtimes)

Industry Advisory Y1 Review NSF announces Expeditions

8/19

Kickoff/AHM

11/19-20

3/26

8/23

10/6 6/10

Girls’ Hat Day

COSMOS LACC

Summit@EPFL DFM&Y

3/18 NSF NNI

Aging Simulator Released (UCLA/UIUC) 8 Teaching Modules (UCLA)

Sensorized ARM Chips

16

Timeline in Progress

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Industry Advisory (Stanford) Y2 Review Y1 Review Research Review (UCSD)

Girls’ Hat Day

COSMOS LACC

IMEC/ESWeek ATS

28nm Test Chips Teaching Modules (UCLA) Complete Eval Boards w/ S-ARM

CUDA Simulator S-ARM R2 Tapeout

Samsung (Tapeout Measurements) ARM, TSMC (Benchmarking)

17

Research: From Measurements to Signatures

• Year 1 was mostly focused on characterization of
variability (IC designer centric)

– What is the extent of variation and can it be sensed? Can it
be used in the HW/SW stack?

• Year 2 focused on proof-of-concept methods to use
variability information (Programmer centric)

– From observation to systematic control.

– Can we construct useful signatures that can enable
systematic observability (and controllability) of variation?

• Year 3 sees the two streams coming together:
expanding collaborations across teams, emerging
testbeds & tools.

18

Important Takeaways

To ensure effective use by software, we need accurate
characterization (of performance, power).

1. Variability imposes a limit on how accurate the
models can get to

– Mean error ~20% + 12% due to variability for 34% overall
error in Nehalem 45nm CPUs

– 15-20% variation across 22 DIMMs

– 20-24% read, 40-67% write variation in Flash

– Rooted in inherent non-observability of power states.

19

Important Takeaways (continued)

2. Instrumentation and sensing is necessary to ensure
‘high-level’ observability of variation

– “High enough for semantic value.” Averages may not be
sufficient.

3. Sensing for delay, power, aging and degradation is
feasible and indeed necessary

– Important difference between failure prediction and error
detection. Notion of static & dynamic variability
management.

4. Variability can be leveraged in software

– media applications, duty cycle, security sensitive
applications. Notion of ‘tunable error’ and its observability
criteria.

20

Important Takeaways (continued)

2. Instrumentation and sensing is necessary to ensure
‘high-level’ observability of variation

– “High enough for semantic value.” Averages may not be
sufficient.

3. Sensing for delay, power, aging and degradation is
feasible and indeed necessary

– Important difference between failure prediction and error
detection. Notion of static & dynamic variability
management.

4. Variability can be leveraged in software

– media applications, duty cycle, security sensitive
applications. Notion of ‘tunable error’ and its observability
criteria.

21

At the end of two years, we have a
complete end-to-end initial
realization of an embedded system
platform with sensing chip, board-
level feedback, OS supporting duty-
cycled tasks driven by variability,
and API for such machines.

Expedition Experimental Platforms &
Artifacts

• Interesting and unique challenges in building
research testbeds that drive our explorations

– Mocks up don’t go far since variability is at the
heart of microelectronic scaling. Need platforms
that capture scaling and integration aspects.

• Testbeds to observe (Molecule, GreenLight,
Ming), control (Oven, ERSA)

22

Ming the Merciless

ERSA@BEE3

Molecule

Red Cooper

Red Cooper Testbed: in-situ visibility

• Customized chip with processor + speed/leakage sensors
available since April 2011

• Testbed board to finish the sensor feedback loop on board

23

CPU Mem Storage Accelerators

Energy Source Network
(Batteries)

Runtime

Microarchitecture and Compilers

Applications

V
en

d
o

r

P
ro

ce
ss

A
m

b
ie

n
t

A
gi

n
g

Power

Performance

Errors

800 MHz M3, 50

packaged parts on

working boards

available since

August 2011. ARM

Cooper board

available since

August 2012.

Ferrari Chip: Closing Loop On-Chip

24

ARM
Cortex-M3

JTAG

AMBA

Bus

GPIO

Timers

PLL RO CLK

Config

64 kB IMEM

176 kB DMEM

E
C
C

Counters

8 banks of sensors
(N/P Leak, Temp, Oxide)

19
DDROs

GPIO

Sens

Out

• On-Chip Sensors
– Memory mapped i/o and control

– Leakage sensors, DDROs,
temperature sensors, reliability
sensors

• Better support for OS and
software.

ARM
Cortex

-M3
DMEM

IMEM

DMEM

P
L
L

DMEM

24 Energy Source Network
(Batteries)

CPU Mem Storage Accelerators

Runtime

Microarchitecture and Compilers

Applications

V
en

d
o

r

P
ro

ce
ss

A
m

b
ie

n
t

A
gi

n
g

Power

Performance

Errors

DUT
Device

Ref.
Device

Available

April 2013

From Control to Software Abstractions

Going forward

• Leon3 (Sparc) sensorized chip tapeout

• Software abstractions: PL and Runtime

– A formal/consistent way of exposing hardware signatures

– A full Linux software stack working

• Verification methods

– Performance & power invariants at RT-level in the presence of
variability (with TI) using probabilistic model checking

• Similar to property checking against Monte Carlo simulations

– Automatic generation of invariants and assertion synthesis.

25

Reaching out and building a
community

Building our teams across 6 six sites

Building our mentors and champions

Creating early adopters

Inspiring talent

Emerging Synergies

UCSD UCLA UCI UIUC UM Stanford

Red Cooper X X X

Molecule X X

VIPZONE X X

VarEMU X X X

Ferrari X X X

ERSA/LLVM X X X X

Software Systems LL Code LL Code Chips Sensors

27

• Examples of collaborative discovery
– Lara Dolecek working with Steve Swanson & Mitra

– Dennis Sylvester at the center of chip/platform characterization

– Nik Dutt, Alex Nicolau and Rakesh Kumar on code scheduling

– Rakesh Kumar, Sorin Lerner, Ranjit Jhala on code analysis and
programming language support for variability.

28

Thank You!

