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To a software designer, all chips look alike 

To a hardware engineer, a chip is 
delivered as per contract in a data-sheet. 
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From Chiseled Objects to Molecular Assemblies 
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What if? 

Hardware Abstraction Layer (HAL) 

Operating System 

Application Application 
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New Hardware-Software Interface.. 
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5 Builds upon a 50-year rich research in fault tolerance. 



UNO Computing Machines Seek 
Opportunities based on Sensing Results 
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Building Machines that leverage move from 
Crash & Recover to Sense & Adapt 

Machines that consist of parts with variations in 
performance, power and reliability 

Machines that incorporate sensing circuits 

Machines w/ interfaces to change ongoing 
computation & structures  

New machine models: QOS or Relaxed Reliability 
parts 
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Example: Procedure Hopping in Clustered 
CPU, Each core with its voltage domain 

• Statically characterize procedure 
for PLV 

• A core increases voltage if 
monitored delay is high 

• A procedure hops from one core 
to another if its voltage variation 
is high 

• Less 1% cycle overhead in 
EEMBC. 
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HW/SW Collaborative Architecture to Support 
Intra-cluster Procedure Hopping  
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• The code is easily accessible via the shared-L1 I$. 
• The data and parameters are passed through the shared stack in 

TCDM.   
• A procedure hopping information table (PHIT) keeps the status 

for a migrated procedure. 

…
ProcX@Callee:
if (calculate_PLV ≤ PLV_threshold)

set_statusX_PHIT = running
load_contex&param_from_SSPX

set_all_param&pointers
call ProcX

store_contex_to_SSPX

set_statusX_PHIT = done
send_broadcast_ack

else 
resume_normal_execution

…

Broadcast_req_ISR:
ProcX@Callee = search_in_PHIT

call ProcX@Callee

…
call ProcX //conventional compile 
Call ProcX@Caller //VA-compile

…
ProcX@Caller:

If (calculate_PLV ≤ PLV_threshold)
call ProcX

else 

create_shared_stack_layout
set_PHIT_for_ProcX

send_broadcast_req
set_timer
wait_on_ack_or_timer

…
Broadcast_ack_ISR:

if (statusX_PHIT == done)
load_context&return_from_SSPX

Shared 

Local

Heap

Shared 

Stack
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ViPZonE: Exploiting Memory Power Variability 

• App developers can optimize 
dynamic allocations for reduced 
power 
• Linux + Glibc implementation 

Application Layer 
Source code annotations 

Upper OS Layer 
Special GLIBC library, kernel system calls 

Lower OS Layer 
DIMM power variability-aware zoning and allocation 

Memory Controller 
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Example: UnO Stack for Duty-cycled Sensors 

Many Sensors: Psleep, Pactive, Memory Speed, Temp, Battery,... 

OS 

Application 

Hardware Signature Sensing Manager 

Activation 

Sampling Configuration 

Sampling Request 

Sample, Event, 

Time -series 

Samp

le 

Forwa

rd 

module SenseAndForward { 
provides energylevel LowFid<1>; 
provides energylevel MidFid<2>; 
provides energylevel HiFid<3>; } 

{ On_event Timer 

call SensorRead(); 

On_event LowFid 

call Timer(2500); 

On_event MidFid 

call Timer(2000); 

On_event HiFid 

call Timer(1650);} 

module SenseAndForward { 
provides energylevel LowFid<1>; 
provides energylevel MidFid<2>; 
provides energylevel HiFid<3>; } 

{ On_event Timer 

call SensorRead(); 

On_event MonitorTimer 

call SysinfoRead(&sysinfo); 

If Error > Delta 

call Time(DownSample); 

} 

module SenseAndForward { 
provides energylevel LowFid<1>; 
provides energylevel MidFid<2>; 
provides energylevel HiFid<3>; } 

{ On_event SysinfoChanged 

call SysinfoRead; 

if Error > Delta 

call Timer(DownSample);} 
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GRAND CHALLENGE, QUESTIONS 
AND RESEARCH PROGRESS 

RESEARCH AND ITS ORGANIZATION 
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Expedition Grand Challenge & Questions 

“Can microelectronic variability be controlled and 
utilized in building better computer systems?” 
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Three Goals: 
a. Address fundamental technical 

challenges (understand the 
problem) 

b. Create experimental systems 
(proof of concept prototypes) 

c. Educational and broader 
impact opportunities to make 
an impact (ensure training for 
future talent). 

What are most effective ways to detect variability? 

What are software-visible manifestations? 

What are software mechanisms to exploit variability? 

How can designers and tools leverage adaptation? 

How do we verify and test hw-sw interfaces? 



Research Organization 

• Four thrust areas 

1. Measurement and Modeling 

2. Design Tools and Testing Methodologies 

3. Microarchitecture and Compilers 

4. Runtime Support 

• Two Cross-cutting thrusts 

5. Applications and Testbeds 

6. Outreach and Education 

14 
Thrusts span teams across universities, usually in pairs. 



Thrusts traverse institutions on testbed 
vehicles seeding various projects 
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Group A: Signature 
Detection and 

Generation 

Characterizing variability in power 
consumption for modern computing 

platforms, and implications 

Runtime support and software 
adaptation for variable hardware 

Probabilistic analysis of faulty 
hardware 

Understanding and exploiting 
variability in flash memory devices 

FPGA-based variability simulator 

Group B: Variability 
Mitigation 
Measures 

Mitigating variability in solid-state 
storage devices 

Hardware solutions to better 
understand and exploit variability 

VarEmu emulation-based testbed for 
variability-aware software 

Variability-aware opportunistic 
system software stack 

Application robustification for 
stochastic processors 

Group C: 
Opportunistic 
Software and 
Abstractions 

Effective error resilience 

Negative bias temperature instability 
and electromigration 

Memory-variability aware runtime 
systems 

Design-dependent ring oscillator and 
software testbed 

Executing programs under relaxed 
semantics 



Two years of building an Expedition 

• Kickoff, review,  tape-outs and builds-ins 

– 82 peer-reviewed publications, 21% collaborative 

– 54 events/releases on variability.org/news 

– 64 presentations on variability.org/presentations 

• A collaborative community 

– 15 faculty, 25 GSRs, 1 postdoc, 10+ UG, 300 K-8-12 

 
 

 

 

 

 

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct 

Intel, Google, Oracle, Cisco (UCSD), STmicro (Michigan) Wafer Pruning from UCLA (EEtimes) 

Industry Advisory Y1 Review NSF announces Expeditions 

8/19 

Kickoff/AHM 

11/19-20 

3/26 

8/23 

10/6 6/10 

Girls’ Hat Day 

COSMOS LACC 

Summit@EPFL DFM&Y 

3/18 NSF NNI 

Aging Simulator Released (UCLA/UIUC) 8 Teaching Modules (UCLA) 

Sensorized ARM Chips 
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Timeline in Progress 

 

 

 

 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Industry Advisory (Stanford) Y2 Review Y1 Review Research Review (UCSD) 

Girls’ Hat Day 

COSMOS LACC 

IMEC/ESWeek ATS 

28nm Test Chips Teaching Modules (UCLA) Complete Eval Boards w/ S-ARM 

CUDA Simulator S-ARM R2 Tapeout 

Samsung (Tapeout Measurements) ARM, TSMC (Benchmarking) 
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Research: From Measurements to Signatures  

• Year 1 was mostly focused on characterization of 
variability (IC designer centric) 

– What is the extent of variation and can it be sensed? Can it 
be used in the HW/SW stack? 

• Year 2 focused on proof-of-concept methods to use 
variability information (Programmer centric) 

– From observation to systematic control.  

– Can we construct useful signatures that can enable 
systematic observability (and controllability) of variation? 

• Year 3 sees the two streams coming together: 
expanding collaborations across teams, emerging 
testbeds & tools. 
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Important Takeaways 

To ensure effective use by software, we need accurate 
characterization (of performance, power).  

 

 

  

1. Variability imposes a limit on how accurate the 
models can get to  

– Mean error ~20% + 12% due to variability for 34% overall 
error in Nehalem 45nm CPUs 

– 15-20% variation across 22 DIMMs 

– 20-24% read, 40-67% write variation in Flash 

– Rooted in inherent non-observability of power states. 
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Important Takeaways (continued) 

2. Instrumentation and sensing is necessary to ensure 
‘high-level’ observability of variation 

– “High enough for semantic value.” Averages may not be 
sufficient. 

3. Sensing for delay, power, aging and degradation is 
feasible and indeed necessary  

– Important difference between failure prediction and error 
detection. Notion of static & dynamic variability 
management. 

4. Variability can be leveraged in software 

– media applications, duty cycle, security sensitive 
applications. Notion of ‘tunable error’ and its observability 
criteria. 
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At the end of two years, we have a 
complete end-to-end initial 
realization of an embedded system 
platform with sensing chip, board-
level feedback, OS supporting duty-
cycled tasks driven by variability, 
and API for such machines.  



Expedition Experimental Platforms & 
Artifacts 

• Interesting and unique challenges in building 
research testbeds that drive our explorations 

– Mocks up don’t go far since variability is at the 
heart of microelectronic scaling. Need platforms 
that capture scaling and integration aspects. 

• Testbeds to observe (Molecule, GreenLight, 
Ming), control (Oven, ERSA) 
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Ming the Merciless 

ERSA@BEE3 

Molecule 

Red Cooper 



Red Cooper Testbed: in-situ visibility 

• Customized chip with processor + speed/leakage sensors 
available since April 2011 

• Testbed board to finish the sensor feedback loop on board 
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Ferrari Chip: Closing Loop On-Chip 
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ARM  
Cortex-M3 

JTAG 

AMBA 

Bus 

GPIO 

Timers 

PLL RO CLK 

Config 

64 kB IMEM 

176 kB DMEM 

E
C
C 

Counters 

8 banks of sensors 
(N/P Leak, Temp, Oxide) 
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DDROs 

GPIO 

Sens 

Out 

• On-Chip Sensors  
– Memory mapped i/o and control 

– Leakage sensors, DDROs, 
temperature sensors, reliability 
sensors 

• Better support for OS and 
software. 
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From Control to Software Abstractions 

Going forward  

• Leon3 (Sparc) sensorized chip tapeout 

• Software abstractions: PL and Runtime 

– A formal/consistent way of exposing hardware signatures 

– A full Linux software stack working 

• Verification methods 

– Performance & power invariants at RT-level in the presence of 
variability (with TI) using probabilistic model checking 

• Similar to property checking against Monte Carlo simulations 

– Automatic generation of invariants and assertion synthesis. 
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Reaching out and building a 
community 

Building our teams across 6 six sites 

Building our mentors and champions 

Creating early adopters  

Inspiring talent 



Emerging Synergies 

UCSD UCLA UCI UIUC UM Stanford 

Red Cooper X X X 

Molecule X X 

VIPZONE X X 

VarEMU X X X 

Ferrari X X X 

ERSA/LLVM X X X X 

Software Systems LL Code LL Code Chips Sensors 
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• Examples of collaborative discovery 
– Lara Dolecek working with Steve Swanson & Mitra 

– Dennis Sylvester at the center of chip/platform characterization 

– Nik Dutt, Alex Nicolau and Rakesh Kumar on code scheduling 

– Rakesh Kumar, Sorin Lerner, Ranjit Jhala on code analysis and 
programming language support for variability.  
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Thank You! 


